Sabtu, 30 Juni 2018

Komputasi Paralel


Komputasi Paralel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Konsep Paralel

Konsep paralel adalah bentuk dari komputasi yanng dapat melakukan tugas secara paralel. paralel sendiri diartikan secara banyak dan serentak (waktu yang bersamaan). Biasanya konsep paralelisme ini digunakan untuk memecahkan masalah besar dengan dengan mudah


Parallel computing dalam konsep penggunaan komputer masa kini adalah penggunakan lebih dari satu CPU untukmenjalankan sebuah program secara simultan. Parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan semakin ringan pemecahan masalah masing-masing CPU. Seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbeda-beda tanpa berkaitan satu sama lainnya, artinya program dijalankan dengan banyak CPU secara bersamaan dengan tujuan untuk membuat program yang lebih baik dan dapat diproses dengan cepat. Kesimpulannya, bahwa pada parallel processing berbeda dengan istilah multitasking, yaitu satu CPU mengangani atau mengeksekusi beberapa program sekaligus, parallel processing dapat disebut juga dengan istilah parallel computing.

Distributed Processing

Distributed Processing adalah kemampuan menjalankan semua proses pengolahan data secara bersama antara komputer yang berfungsi sebagai pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah maka prosesor yang lain akan mengambil alih tugasnya. Dalam proses distribusi sudah mutlak diperlukan perpaduan yang mendalam antara teknologi komputer dan telekomunikasi, karena selain proses yang harus didistribusikan, semua host komputer wajib melayani terminal-terminalnya dalam satu perintah dari komputer pusat.

Arsitektur Komputer Paralel

Berdasarkan jumlah dan prinsip kerja prosesor pada komputer paralel, A.J. Van der Steen dan J. Donggara menyebutkan terdapat empat arsitektur utama komputer paralel menurut Flynn (1972) yaitu : 

1) Komputer SISD (Single Instruction stream-Single Data stream)
Pada komputer jenis ini semua instruksi dikerjakan terurut satu demi satu, tetapi juga dimungkinkan adanya overlapping dalam eksekusi setiap bagian instruksi (pipelining). Pada umumnya komputer SISD berupa komputer yang terdiri atas satu buah pemroses (single processor). Namun komputer SISD juga mungkin memiliki lebih dari satu unit fungsional (modul memori, unit pemroses, dan lain-lain), selama seluruh unit fungsional tersebut berada dalam kendali sebuah unit pengendali. Skema arsitektur global komputer SISD.


2) Komputer SIMD (Single Instruction stream-Multiple Data stream)
Pada komputer SIMD terdapat lebih dari satu elemen pemrosesan yang dikendalikan oleh sebuah unit pengendali yang sama. Seluruh elemen pemrosesan menerima dan menjalankan instruksi yang sama yang dikirimkan unit pengendali, namun melakukan operasi terhadap himpunan data yang berbeda yang berasal dari aliran data yang berbeda pula.


3) Komputer MISD (Multiple Instruction stream-Single Data stream)
Komputer jenis ini memiliki n unit pemroses yang masingmasing menerima dan mengoperasikan instruksi yang berbeda terhadap aliran data yang sama, dikarenakan setiap unit pemroses memiliki unit pengendali yang berbeda. Keluaran dari satu pemroses menjadi masukan bagi pemroses berikutnya. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian.


4) Komputer MIMD (Multiple Instruction stream-Multiple Data stream)
Pada sistem komputer MIMD murni terdapat interaksi di antara pemroses. Hal ini disebabkan seluruh aliran dari dan ke memori berasal dari space data yang sama bagi semua pemroses. Komputer MIMD bersifat tightly coupled jika tingkat interaksi antara pemroses tinggi dan disebut loosely coupled jika tingkat interaksi antara pemroses rendah.

Pengantar Thread Programing

Threading / Thread adalah sebuah alur kontrol dari sebuah proses. Konsep threading adalah menjalankan 2 proses ( proses yang sama atau proses yang berbeda ) dalam satu waktu. Contohnya sebuah web browser mempunyai thread untuk menampilkan gambar atau tulisan sedangkan thread yang lain berfungsi sebagai penerima data dari network. Threading dibagi menjadi 2 :
Static Threading
Teknik ini biasa digunakan untuk komputer dengan chip multiprocessors dan jenis komputer shared-memory lainnya. Teknik ini memungkinkan thread berbagi memori yang tersedia, menggunakan program counter dan mengeksekusi program secara independen. Sistem operasi menempatkan satu thread pada prosesor dan menukarnya dengan thread lain yang hendak menggunakan prosesor itu.
Dynamic Multithreading
Teknik ini merupakan pengembangan dari teknik sebelumnya yang bertujuan untuk kemudahan karena dengannya programmer tidak harus pusing dengan protokol komunikasi, load balancing, dan kerumitan lain yang ada pada static threading. Concurrency platform ini menyediakan scheduler yang melakukan load balacing secara otomatis. Walaupun platformnya masih dalam pengembangan namun secara umum mendukung dua fitur : nested parallelism dan parallel loops.

Pengantar Massage Passing dan OpenMP

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel. Proses yang dijalankan oleh sebuah aplikasi dapat dibagi untuk dikirimkan ke masing-masing compute node yang kemudian masing-masing compute node tersebut mengolah dan mengembalikan hasilnya ke komputer head node.Untuk merancang aplikasi paralel tentu membutuhkan banyak pertimbangan-pertimbangan diantaranya adalah latensi dari jaringan dan lama sebuah tugas dieksekusi oleh prosesor.
MPI ini merupakan standard yang dikembangkan untuk membuat aplikasi pengirim pesan secara portable. Sebuah komputasi paralel terdiri dari sejumlah proses, dimana masing-masing bekerja pada beberapa data lokal. Setiap proses mempunyai variabel lokal, dan tidak ada mekanismesuatu proses yang bisa mengakses secara langsung memori yang lain. Pembagian data antar  proses dilakukan dengan message passing, yaitu dengan mengirim dan menerima pesan antar  proses. MPI menyediakan fungsi-fungsi untuk menukarkan antar pesan. Kegunaan MPI yang lain :
1.      menulis kode paralel secara portable
2.      mendapatkan performa yang tinggi dalam pemrograman paralel
3.      menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak  begitu cocok dengan model data paralel.
OpenMP
OpenMP merupakan API yang mendukung multi-platform berbagi memori multiprocessing pemrograman C , C + + , dan Fortran , pada kebanyakan arsitektur prosesor dan system operasi , termasuk Solaris , AIX , HP-UX , GNU / Linux , Mac OS X , dan Windows platform. Ini terdiri dari satu set perintah kompiler, rutinitas library, dan variable lingkungan yang mempengaruhi perilaku run-time. OpenMP dikelola oleh nirlaba teknologi konsorsium OpenMP Arsitektur Review Board (ARB atau OpenMP), bersama-sama didefinisikan oleh sekelompok perangkat keras komputer utama dan vendor perangkat lunak, termasuk AMD , IBM , Intel , Cray , HP , Fujitsu , Nvidia , NEC , Microsoft , Texas Instruments , Oracle Corporation , dan banyak lagi.

Pengantar Pemrograman CUDA GPU

GPU ( Graphical Processing Unit ) awalnya adalah sebuah prosesor yang berfungsi khusus untuk melakukan rendering pada kartu grafik saja, tetapi seiring dengan semakin meningkatnya kebutuhan rendering, terutama untuk mendekati waktu proses yang realtime, maka meningkat pula kemampuan prosesor grafik tersebut. akselerasi peningkatan teknologi GPU ini lebih cepat daripada peningkatan teknologi prosesor sesungguhnya ( CPU ), dan pada akhirnya GPU menjadi General Purpose, yang artinya tidak lagi hanya untuk melakukan rendering saja melainkan bisa untuk proses komputasi secara umum.
         Penggunaan Multi GPU dapat mempercepat waktu proses dalam mengeksekusi program karena arsitekturnya yang natively parallel. Selain itu Peningkatan performa yang terjadi tidak hanya berdasarkan kecepatan hardware GPU saja, tetapi faktor yang lebih penting adalah cara membuat kode program yang benarbenar bisa efektif berjalan pada Multi GPU.
CUDA merupakan teknologi anyar dari produsen kartu grafis Nvidia, dan mungkin belum banyak digunakan orang secara umum. Kartu grafis lebih banyak digunakan untuk menjalankan aplikasi game, namun dengan teknologi CUDA ini kartu grafis dapat digunakan lebih optimal ketika menjalankan sebuah software aplikasi. Fungsi kartu grafis Nvidia digunakan untuk membantu Processor (CPU) dalam melakukan kalkulasi dalam proses data.
CUDA merupakan singkatan dari Compute Unified Device Architecture, didefinisikan sebagai sebuah arsitektur komputer parallel, dikembangkan oleh Nvidia. Teknologi ini dapat digunakan untuk menjalankan proses pengolahan gambar, video, rendering 3D, dan lain sebagainya. VGA – VGA dari Nvidia yang sudah menggunakan teknologi CUDA antara lain : Nvidia GeForce GTX 280, GTX 260,9800 GX2, 9800 GTX+,9800 GTX,9800 GT,9600 GSO, 9600 GT,9500 GT,9400 GT,9400 mGPU,9300 mGPU,8800 Ultra,8800 GTX,8800 GTS,8800 GT,8800 GS,8600 GTS,8600 GT,8500 GT,8400 GS, 8300 mGPU, 8200 mGPU, 8100 mGPU, dan seri sejenis untuk kelas mobile ( VGA notebook ).
     Singkatnya, CUDA dapat memberikan proses dengan pendekatan bahasa C, sehingga programmer atau pengembang software dapat lebih cepat menyelesaikan perhitungan yang komplek. Bukan hanya aplikasi seperti teknologi ilmu pengetahuan yang spesifik. CUDA sekarang bisa dimanfaatkan untuk aplikasi multimedia. Misalnya meng-edit film dan melakukan filter gambar. Sebagai contoh dengan aplikasi multimedia, sudah mengunakan teknologi CUDA. Software TMPGenc 4.0 misalnya membuat aplikasi editing dengan mengambil sebagian proces dari GPU dan CPU. VGA yang dapat memanfaatkan CUDA hanya versi 8000 atau lebih tinggi.

Referensi :
http://wildanwilly.blogspot.com/2017/04/paralel-computer-architecture.html
http://arifbudimanhsb.blogspot.com/2016/06/distributed-processing-adalah.html
http://naturaladli.blogspot.com/2016/06/konsep-komputasi-paralel.html

Share:

0 komentar:

Posting Komentar

small rss seocips Music MP3

Motion

Search

Portfolio

Pages

Contact

Nama

Email *

Pesan *

Popular Posts

  • Individu, Keluarga, dan Masyarakat

    "Individu, Keluarga, dan Masyarakat" Pertumbuhan Individu       Pertumbuhan sendiri berarti tahapan peningkatan sesua...
  • Definisi, Manfaat, Komponen, dan Aplikasi New Media

    " Definisi, Manfaat, Komponen, dan Aplikasi New Media " Definisi New Media       New Media dis...
  • Quantum Qomputing dan Hubungannya

    Quantum Computation Quantum atau komputer kuantum, merupakan komputer yang memanfaatkan fenomena-fenomena dari mekanika quantum, seper...
  • Studi Kasus Internet dan Web Design

    "Studi Kasus Internet dan Web Design" Dalam memasuki era globalisasi ini dan dalam masa masa perkembangan teknologi yang sa...
  • Penduduk, Masyarakat, dan Kebudayaan

    "Penduduk, Masyarakat, dan Kebudayaan" Pertumbuhan Penduduk     Pertumbuhan penduduk adalah perubahan pop...
  • Privacy Police

    Privacy Policy for rendyferryka If you require any more information or have any questions about our privacy policy, please feel free to con...
  • Menganalisa Aplikasi New Media

    "Menganalisa Aplikasi New Media"            New Media adalah istilah yang dimaksudkan  untuk mencakup kemunculan digital, kom...
  • Komputasi Paralel

    Komputasi Paralel Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa kompute...
  • Tentang Komputasi Modern

    Cloud Computing Cloud computing mungkin masih samar terdengar bagi orang awam. Tetapi keberadaan  cloud computing  di era digital kini...
  • RINGKASAN PENULISAN ILMIAH

    RINGKASAN PENULISAN ILMIAH Nama          : Rendy Ferryka Hendra Pembimbing : Moch. Wisuda Sardjono, SKom, MMSi. “Pembuatan Aplik...